The novel gene tank, a tumor suppressor homolog, regulates ethanol sensitivity in Drosophila.

نویسندگان

  • Anita V Devineni
  • Mark Eddison
  • Ulrike Heberlein
چکیده

In both mammalian and insect models of ethanol intoxication, high doses of ethanol induce motor impairment and eventually sedation. Sensitivity to the sedative effects of ethanol is inversely correlated with risk for alcoholism. However, the genes regulating ethanol sensitivity are largely unknown. Based on a previous genetic screen in Drosophila for ethanol sedation mutants, we identified a novel gene, tank (CG15626), the homolog of the mammalian tumor suppressor EI24/PIG8, which has a strong role in regulating ethanol sedation sensitivity. Genetic and behavioral analyses revealed that tank acts in the adult nervous system to promote ethanol sensitivity. We localized the function of tank in regulating ethanol sensitivity to neurons within the pars intercerebralis that have not been implicated previously in ethanol responses. We show that acutely manipulating the activity of all tank-expressing neurons, or of pars intercerebralis neurons in particular, alters ethanol sensitivity in a sexually dimorphic manner, since neuronal activation enhanced ethanol sedation in males, but not females. Finally, we provide anatomical evidence that tank-expressing neurons form likely synaptic connections with neurons expressing the neural sex determination factor fruitless (fru), which have been implicated recently in the regulation of ethanol sensitivity. We suggest that a functional interaction with fru neurons, many of which are sexually dimorphic, may account for the sex-specific effect induced by activating tank neurons. Overall, we have characterized a novel gene and corresponding set of neurons that regulate ethanol sensitivity in Drosophila.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Promoter hypermethylation of KLOTHO; an anti-senescence related gene in colorectal cancer patients of Kashmir valley

Hypermethylation of CpG islands located in the promoter regions of genes is a major event in the development of the majority of cancer types, due to the subsequent aberrant silencing of important tumor suppressor genes. KLOTHO; a novel gene associated primarily with suppressing senescence has been shown to contribute to tumorigenesis as a result of its impaired function. Recently the relevance ...

متن کامل

A screen for conditional growth suppressor genes identifies the Drosophila homolog of HD-PTP as a regulator of the oncoprotein Yorkie.

Mammalian cancers depend on "multiple hits," some of which promote growth and some of which block apoptosis. We screened for mutations that require a synergistic block in apoptosis to promote tissue overgrowth and identified myopic (mop), the Drosophila homolog of the candidate tumor-suppressor and endosomal regulator His-domain protein tyrosine phosphatase (HD-PTP). We find that Myopic regulat...

متن کامل

The Drosophila LIN54 homolog Mip120 controls two aspects of oogenesis

The conserved multi-protein MuvB core associates with the Myb oncoproteins and with the RB-E2F-DP tumor suppressor proteins in complexes that regulate cell proliferation, differentiation, and apoptosis. Drosophila Mip120, a homolog of LIN54, is a sequence-specific DNA-binding protein within the MuvB core. A mutant of Drosophilamip120 was previously shown to cause female and male sterility. We n...

متن کامل

E2 ligase dRad6 regulates DMP53 turnover in Drosophila.

The turnover of tumor suppressor p53 is critical for its role in various cellular events. However, the pathway that regulates the turnover of the Drosophila melanogaster DMP53 is largely unknown. Here, we provide evidence for the first time that the E2 ligase, Drosophila homolog of Rad6 (dRad6/Dhr6), plays an important role in the regulation of DMP53 turnover. Depletion of dRad6 results in DMP5...

متن کامل

hippo Encodes a Ste-20 Family Protein Kinase that Restricts Cell Proliferation and Promotes Apoptosis in Conjunction with salvador and warts

The coordination between cell proliferation and cell death is essential to maintain homeostasis within multicellular organisms. The mechanisms underlying this regulation are yet to be completely understood. Here, we report the identification of hippo (hpo) as a gene that regulates both cell proliferation and cell death in Drosophila. hpo encodes a Ste-20 family protein kinase that binds to and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 33 19  شماره 

صفحات  -

تاریخ انتشار 2013